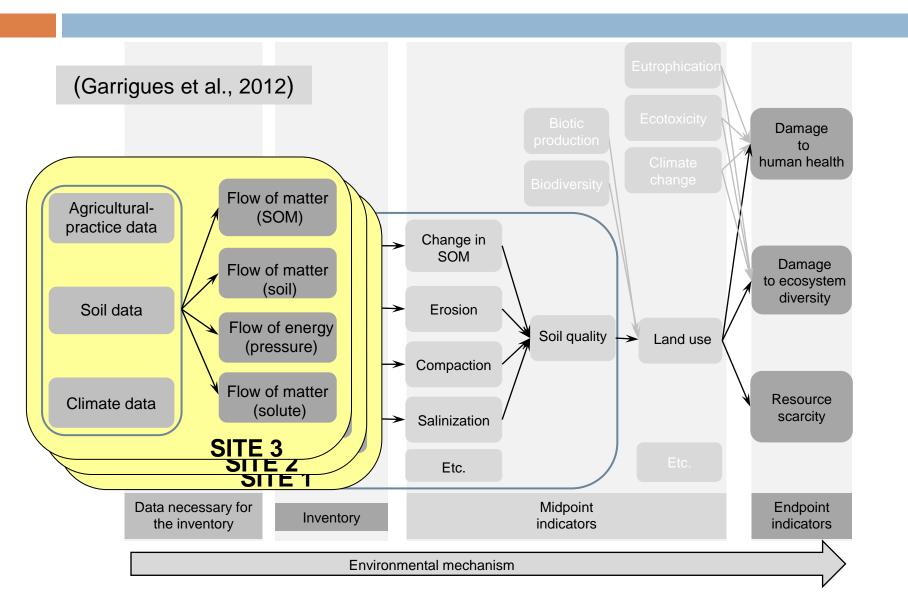


Federal Department of Economic Affairs, Education and Research EAER **Agroscope**

Swiss Confederation



DEVELOPMENT OF SOIL QUALITY INDICATORS IN AGRICULTURAL LCA. APPLICATION TO PIG PRODUCTION AND VINEYARDS.

1st Soil quality indicators in Life Cycle Assessment Workshop 30th August, Bordeaux, France

Emmanuelle Garrigues/ INRA

Background and research question

Method: ACV-SOL

It estimates quantitative changes in soil quality by adapting and/or using existing simulation models.

Water erosion

kg of soil / t crop

kg of soil / ha

RUSLE 2

FU: kg of crop produced

FU: hectare

Model(s)

Change in soil organic carbon (SOC)

kg C / t crop

kg C / ha

RothC v26.3

Compaction (porosity loss)

m³ / t crop

 m^3 / ha

BILHY + COMPSOIL

Crop management data

	Erosion	Δ SOC	Compaction	Others =
CROP				
Type of crop	•	•	•	•
Yield	•	•	•	•
Kc (plant-cover coefficient)	•		•	
Cover residue (DM)	•	•		
Root residue (DM)		•		
CROP MANAGEMENT				
Operation dates	•	•	•	•
Number of passes	•	•	•	•
Irrigation	•	•	•	•
Intercrops	•	•	•	•
MACHINES				
Vehicle type	•		•	•
Vehicle weight			•	•
Tire size			•	
Fieldwork width			•	
Weight distribution			•	
Fuel use				•

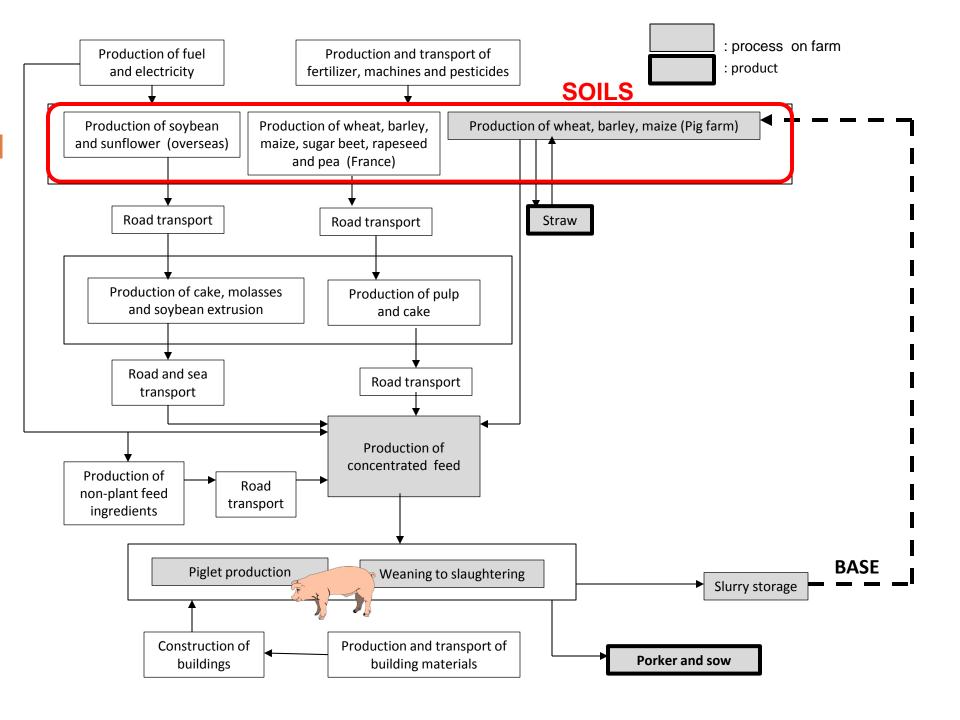
Eutrophication
Climate change
Acidification
Terrestrial toxicity
Energy use

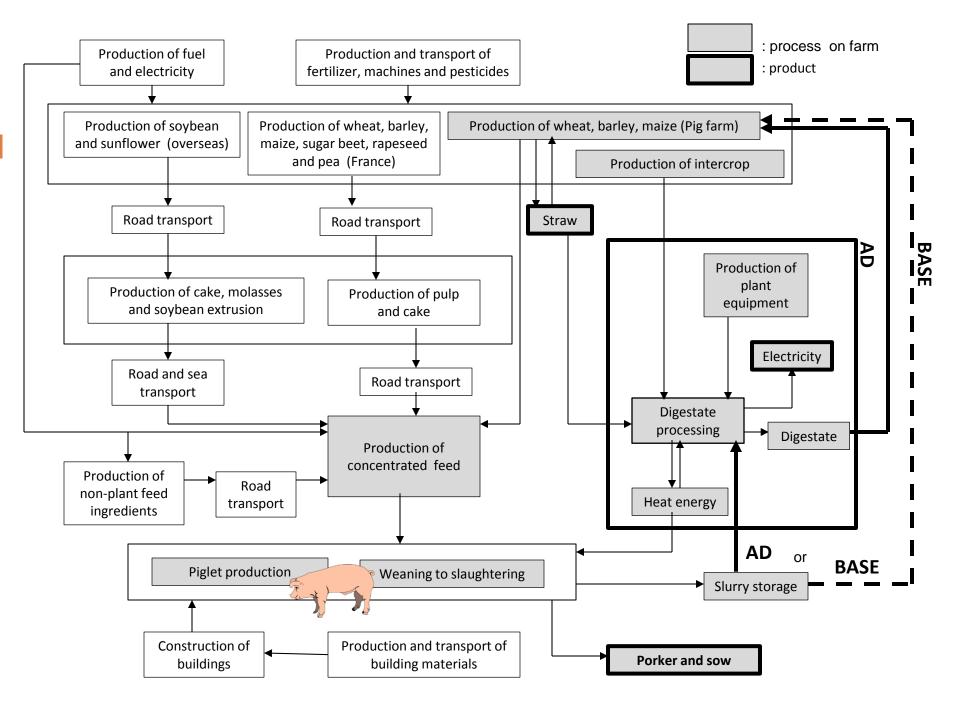
Climate and soil data

	Erosion	Δ SOC	Compaction
CLIMATE DATA			
Temperature	monthly	monthly	daily
Precipitation	monthly	monthly	daily
Potential evapotranspiration		monthly	daily
SOIL DATA			
Texture (clay, silt, sand) (%)	•	•	•
Soil organic matter (%)	•	•	•
Initial soil bulk density		•	•
Rock cover (%)	•		
Slope length (m)	•		
Average slope steepness (%)	•		
Water content at field capacity			•
Water content at wilting point			•

NASA Climatology Resource for Agroclimatology Daily Averaged Data

Harmonized World Soil Database (HWSD) FAO and ISRIC-World Soil Information


Application to pig production in Brittany + on-farm biogas production


BASE SCENARIO:

standard manure storage and spreading on a representative pig farm in Brittany


AD SCENARIO:

on-farm co-digestion of pig slurry + digestate spreading instead of slurry

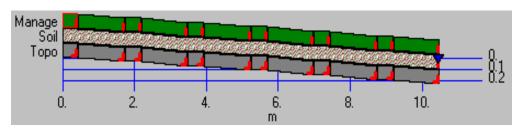
Results

Impact category	Unit	BASE	AD	AD-BASE (%)
Acidification	kg SO ₂ eq	5.45E-02	5.57E-02	+2.1
Eutrophication	kg PO ₄ eq	1.53E-02	1.57E-02	+2.5
Climate change (GWP100)	kg CO ₂ eq	1.90E+00	1.86E+00	-1.9
Fresh water aquatic ecotoxicity	kg 1.4-DB eq	9.33E-01	9.22E-01	-1.2
Marine aquatic ecotoxicity	kg 1.4-DB eq	3.65E+02	3.58E+02	-2.0
Terrestrial ecotoxicity	kg 1.4-DB eq	1.52E-01	1.50E-01	-1.1
Photochemical oxidation	kg C ₂ H ₄	8.81E-04	8.79E-04	-0.3
Land occupation	m²y	3.93E+00	3.94E+00	+0.2
Total cumulative energy demand	MJ	1.18E+01	1.09E+01	-8.1
Soil organic matter change	kg C	1.35E+01	1.12E+01	-17.5
Compaction	m^3	1.21E+01	1.90E+01	+36.4
Erosion	Kg soil	96.54		-

Application to erosion in French vineyards

Objective:

to develop an erosion indicator adapted to the French vineyards production



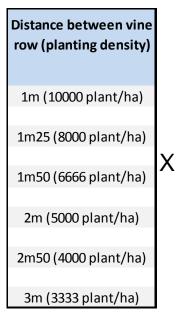
RUSLE2: French vineyards profile

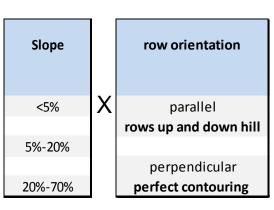
« Vineyard profile, France »

Vineyards represented with combination of two templates: vine alleys and vine rows.

Three types of vineyards management are modelled:

- Vineyard, clean till (Clean tilled weed growth controlled by tilling or chemicals)
- Vineyard, full cover (Grass and weed cover)
- Vineyard, cover in alley (Grass & weed cover in alleyways)


RUSLE2: French vineyards template



5 practices management x 6 planting densities x 3 slope ranges x 2 row orientations = **180 combinations**

X

Practices				
VINE ROW	VINE ALLEY			
vineyard, vine, P, partial grass1 chemical weed control	vineyard, alley, P, partial grass1 weed control : mowing			
vineyard, vine, P, partial grass2 mecanical weed control	vineyard, alley, P, partial grass2 weed control: mowing			
	o .			
vineyard, vine, P, no grass chem chemical weed control	vineyard, alley, P, no grass chem chemical weed control			
vineyard, vine, P, no grass meca mecanical weed control	vineyard, alley, P, no grass meca mechanical weed control			
vineyard, vine, P, 100% grass weed control : mowing	vineyard, alley, P, 100% grass weed control : mowing			

Conclusion

- ACV-SOL indicators can identify crops and cropping practices that contribute the most to impacts on soil physical quality.
- With these indicators, LCA can now display soil-quality impacts along with other, more traditional, impact categories.
- As a modular method, it can be used to assess only one of the three impacts available.
- These impacts can be positive, such as soil carbon sequestration.